
  Turing Machines and Effective 
Computability 



Turing machines 

 the most powerful  automata (> FAs and PDAs ) 
 invented by Turing in 1936 
 can compute any function normally considered 

computable 
 Turing-Church Theses: 

◦ Anything (function, problem, set etc.) that is (though to be) 
computable is computable by a Turing machine (i.e., Turing-
computable). 

 Other equivalent formalisms: 
◦ post systems (string rewriting system) 
◦ PSG (phrase structure grammars) : on strings 
◦ m-recursive function : on numbers 
◦ l-calculus, combinatory logic: on l-term 
◦ C, BASIC, PASCAL, JAVA languages,… : on strings 



Informal description of a Turing 
machine 

1. Finite automata (DFAs, NFAs, etc.):  
◦ limited input tape: one-way, read-only 
◦ no working-memory 
◦ finite-control store (program) 

2. PDAs: 
◦ limited input tape: one-way, read-only 
◦ one additional stack as working memory 
◦ finite-control store (program) 

3. Turing machines (TMs): 
◦ a semi-infinite tape storing input and supplying 
additional working storage. 

◦ finite control store (program) 
◦ can read/write and two-way(move left and right) 
depending on the program state and input symbol 
scanned. 



Turing machines and LBAs 

4. Linear-bounded automata (LBA): special TMs 
◦ the input tape is of the same size as the input length 

 (i.e., no additional memory supplied except those used to store 
the input) 

◦ can read/write and move left/right depending on the program 
state and input symbol scanned. 

 Primitive instructions of a TM (like +,-,*, etc in C or 
BASIC): 
1.  L, R             //  moving the tape head left or right  

2.  a  G,          //   write the symbol a  G on the current   
       scanned position 

depending on the precondition: 

  1. current state and 

  2. current scanned symbol of the tape head 
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The structure of a TM instruction: 

 An instruction of a TM is a tuple: 

          (q,    a,     p,      d)   Q x G x Q x (G U {L,R}) 

   where  
◦ q is the current state 

◦ a is the symbol scanned by the tape head 
◦ (q,a) define a precondition that the machine may encounter 

◦ (p,d) specify the actions to be done by the TM once the machine is in a 
condition matching the precondition (i.e., the symbol scanned by the tape 
head is ‘a’ and the machine is at state q ) 

◦ p is the next state that the TM will enter 

◦ d is the action to be performed: 

 d = b  G means “write the symbol b to the tape cell currently 
scanned by the tape head”.  

 d = R (or L) means “move the tape head one tape cell in the  
right (or left, respectively) direction. 

 A Deterministic TM program d is simply a set of TM instructions (or 
more formally a function: d: Q x G --> Qx (G U{L,R})) 



Formal Definition of a standard TM 
(STM) 

 A deterministic 1-tape Turing machine (STM) is a 9-
tuple 

                  M = (Q,S,G, [, ฀, d, s, t,r ) where  
◦ Q : is a finite set of (program) states with a role like labels 
in  traditional programs 

◦ G         :   tape alphabet 
◦ S  G : input alphabet 
◦ [  G - S  : The left end-of-tape mark 
◦ ฀  G - S is the blank tape symbol 
◦ s  Q : initial state 
◦ t  Q : the accept state 
◦ r  t  Q: the reject state and 
◦ d: (Q - {t,r})x G --> Qx(G U {L,R}) is a total transition 
function with the restriction: if d(p, [ ) =(q, d) then d = R. 
i.e., the STM cannot write any symbol at left-end and 
never move off the tape to the left. 
 



Configurations and acceptances 

 Issue: h/w to define configurations like those 
defined at FAs  and PDAs ? 

 At any time t0 the TM M’s tape contains a semi-
infinite string of the form 

                 Tape(t0)  = [ y1y2…ym ฀ ฀ ฀ ฀ …..  (ym  ฀) 

 Let ฀ w denotes the semi-infinite string: 

     ฀ ฀ ฀ ฀ ฀ ….. 
Note: Although the tape  is an infinite string, it has a 

finite canonical representation: y, where y = [ y1…ym 
(with  ym  ฀ ) 

  

A configuration of the TM M is a global state giving a 
snapshot of all relevant info about M’s computation 
at some instance in time. 



Formal definition of a configuration 

Def: a cfg of a STM M is an element of  
            CFM =def Q x { [ y | y  (G-{[})*} x N      // N = 

{0,1,2,…}  // 
When the machine  M is at cfg (p, z, n) , it means M is  
 1. at state p 
 2. Tape head is pointing to position n and 
    3. the input tape content is z. 
Obviously cfg gives us sufficient information to continue the 

execution of the machine. 
Def: 1. [Initial configuration:] Given an input x and a STM M, 
 the initial configuration of M on input x is the triple: 
           (s, [x, 0) 
2. If cfg1 = (p, y, n), then cfg1 is an accept configuration if p = 

t (the accept configuration), and cfg1 is an reject cfg if p = r 
( the reject cfg). cfg1 is a halting cfg if it is an accept or 
reject cfg. 



One-step and multi-step TM computations 

 one-step Turing computation ( |--M) is defined as follows: 
 |--M   CFM

2  s.t.  
  0.      (p,z,n)  |--M   (q,sn

b(z), n)     if  d(p,zn) = (q, b) where 
b G   

  1.      (p,z,n)  |--M   (q,z, n-1)         if  d(p,zn) = (q,  L) 
  2.      (p,z,n)  |--M   (q,z, n+1)        if  d(p,zn) =  (q, R)  

◦ where sn
b(z) is the resulting string with the n-th symbol of z replaced 

by ‘b’. 
◦ ex: s4

b( [baaacabc ) = [baabcabc 

◦       s6
b( [baa ) = [baa฀฀b 

 |--M is defined to be the set of all pairs of configurations 
each satisfying one of the above three rules.  

Notes:  1. if C=(p,z,n) |--M (q,y,m) then n 0 and m  0 
(why?)  

  2. |--M is a function [from nonhalting cfgs to cfgs] (i.e., if C 
|--M D & C |--M E then D=E). 

  3. define |--n
M and |--*M (ref. and tran. closure of |--M) as 

usual. 



Accepting and rejecting of TM on inputs 

 x  S is said to be accepted by a STM M if 

          icfgM(x) =def (s, [x, 0) |--*M (t,y,n)   for some 
y and n 
◦ I.e, there is a finite computation  

       (s, [x, 0) = C0 |--M  C1 |-- M …. |--M Ck = (t,y,n) 

starting from the initial configuration and ending at an accept 
configuration. 

 x is said to be rejected by a STM M if 

                     (s, [x, 0) |--*M (r,y,n)     for some y 
and n 
◦  I.e, there is a finite computation  

◦       (s, [x, 0) = C0 |--M  C1 |-- M …. |--M Ck = (t,y,n) 

◦  starting from the initial configuration and ending at a reject 
configuration. 

 Notes:  1. It is impossible that x is both accepted and rejected by a 
STM. (why ?) 

  2. It is possible that x is neither accepted nor rejected. (why ?) 



Languages accepted by a STM 

Def: 

  1. M is said to halt on input x if either M accepts x or 
rejects x. 

  2. M is said to loop on x if it does not halt on x. 

  3.  A TM is said to be total if it halts on all inputs. 

  4.  The language accepted by a TM M,         

      L(M) =def {x in S* | x is accepted by M, i.e., (s, [x฀w ,0) 
|--*M (t, -,-) } 

 5. If L = L(M) for some STM M  

    ==> L is said to be recursively enumerable (r.e.)  

 6. If L = L(M) for some total STM M  

    ==> L is said to be recursive 

 7. If ~ L=def S* - L = L(M) for some  STM M  (or total STM 
M) 

    ==> L is said to be Co-r.e. (or Co-recursive, respectively) 

 



Some examples 

Ex1: Find a STM to accept  L1 = { w # w | w  
{a,b}* } 

 note: L1 is not CFL. 
 The STM has tape alphabet G = {a, b,#, -, ฀, [} and behaves as 

follows: on input z = w # w  {a,b,#}*  
 1.  if z is not of the form {a,b}* # {a,b}*  => goto reject  

 2.  move left until ‘[‘ is encountered and  in that case move right 
 3. while I/P = ‘-’ move right;   
 4. if I/P = ‘a’ then 

      4.1  write ‘-’; move right until # is encountered; Move right; 
      4.2  while I/P = ‘-’ move right 
      4.3  case (I/P) of {  ‘a’ : (write ‘-’; goto 2);     o/w: goto reject  }

  

 5. if I/p = ‘b’ then … // like 4.1~ 4.3 

 6. If I/P = ‘#’ then     // All symbols left to # have been compared 

   6.1 move right 

      6.2  while I/P = ‘-” move right 
      6.3  case (I/P) of {‘฀’ : goto Accept;     o/w: go to Reject  }    



More detail of the STM 

Step 1 can be accomplished as follows:  

 1.1  while (~# /\ ~ ฀)   R; // or equivalently, while 
(a \/ b\/[) R 

        if ฀ => reject   // no # found on the input 

        if # => R; 

 1.2  While ( ~# /\ ~ ฀ ) R; 

     if ฀ => goto accept [or goto 2 if regarded as a 
subroutine] 

        if #   => goto Reject;     // more than one #s 
found  

 

Step 1 requires only two states: 

 

    



Graphical representation of a TM 
   
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means: 

 if  (state = p) /\ (cnd true for i/p) 

  then 1. perform ACs and 2. go to q 

ACs can be primitive ones: R, L, a,… 

or another subroutine TM M1. 

 

Ex: the arc from s to s implies the  

      existence of 4 instructions: 

  (s, a, s, R), (s,b,s,R), (s, [,s,R), 

  and  (s,-, s,R) 

 



Tabular form of a STM 

 Translation of the graphical form to tabular 
form of a STM 
 [ a b # - ฀ 

>s s,R s,R s,R u,R x r,x 

u x u,R u,R r,x x t, ฀ 

tF halt halt halt halt halt halt 

rF halt halt halt halt halt halt 

 

X means don’t care 

The rows for t & r indeed need not be listed!! 
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The complete STM accepting L1 
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R.e. and recursive languages 
Recall the following definitions: 
  1. M is said to halt on input x if either M accepts x or 

rejects x. 
  2. M is said to loop on x if it does not halt on x. 
  3.  A TM is said to be total if it halts on all inputs. 
  4.  The language accepted by a TM M,         

   L(M) =def {x ∈S* | x is accepted by M, i.e., (s, [x ฀ w ,0) 
|--*M (t, -,-) } 

 5. If L = L(M) for some STM M  
    ==> L is said to be recursively enumerable (r.e.)  
 6. If L = L(M) for some total STM M  
    ==> L is said to be recursive 
 7. If ~ L=def S* - L = L(M) for some  STM M  (or total STM 

M) 
    ==> L is said to be Co-r.e. (or Co-recursive, 

respectively) 



Recursive languages are closed under 
complement 
Theorem 1: Recursive languages are closed under complement. 

(i.e., If L is recursive, then ~L = S* - L is recursive.) 

pf: Suppose L is recursive. Then L = L(M) for some total TM M. 
   Now let M* be the machine M with accept and reject states 

switched. 
  Now for any input x,   

◦  x   ~L =>  x L(M) => icfgM(x) |-M*  (t,-,-)    => 

◦        icfgM*(x) |-M**  (r*,-,-) => x  L(M*). 

◦ x ~L => x   L(M) => icfgM(x) |-M*  (r,-,-)    =>  

◦         icfgM*(x) |-M**  (t*,-,-) => x  L(M*). 

Hence ~L = L(M*) and is recursive. 
Note.The same argument cannot be applied to r.e. languages. 

 (why?) 
Exercise: Are recursive sets closed under union, intersection, 

concatenation and/or Kleene’s operation ? 



Some more terminology 

          Set :  Recursive and recursively enumerable(r.e.)  

predicate:  Decidability and semidecidability 

  Problem:   Solvability and semisolvabilty 

 P : a statement about strings ( or a property of strings) 

 A: a set of strings 

 Q : a (decision) Problem. 

We say that  

1. P is decidable  <==> { x | P(x) is true } is recursive 

2. A is recursive  <==> “x  A” is decidable. 
3. P is semidecidable  <==> { x | P(x) is true } is r.e. 

4. A is r.e.  <==> “x  A” is semidecidable. 
5. Q is solvable <=> Rep(Q) =def {“P” |  P is a positive instance 

of Q } is recursive. 

6. Q is semisolvale <==> Rep(Q) is r.e.. 


