Turing Machines and Effective
Computability



the most powerful automata (> FAs and PDAs )

invented by Turing in 1936
can compute any function normally considered
computable

Turing-Church Theses:
Anything ﬂfunction, problem, set etc.) that is (though to be)
computable is computable by a Turing machine (i.e., Turing-
computable).
Other equivalent formalisms:
post systems (string rewriting system)
PSG (phrase structure grammars) : on strings
u-recursive function : on numbers
A-calculus, combinatory logic: on A-term
C, BASIC, PASCAL, JAVA languages,... : on strings



1. Finite automata (DFAs, NFAs, etc.):
limited input tape: one-way, read-only
no working-memory
finite-control store (program)

2. PDAs:
limited input tape: one-way, read-only
one additional stack as working memory
finite-control store (program)

3. Turing machines (TMs):
a semi-infinite tape storing input and supplying
additional working storage.
finite control store (program)

can read/write and two-way(move left and right)
depending on the program state and input symbol
scanned.



4. Linear-bounded automata (LBA): special TMs
the input tape is of the same size as the input length
(i.e., no additional memory supplied except those used to store
the input)
can read/write and move left/right depending on the program
state and input symbol scanned.

Primitive instructions of a TM (like +,-,*, etc in C or

BASIC):
1. L, R // moving the tape head left or right
2. ael, // write the symbol a € I" on the current

scanned position
depending on the precondition:
1. current state and
2. current scanned symbol of the tape head



The model of a Turing machine

left-end memory is a one-dimensional tape
INput.x additional working memory
AL AL
- ™ ™~
Xq|Xo | Xg| Xq| Xs|.. | X, no right-end for TM
r/'w & movable tape head
permitted actions:
1. write
2. move left/right
— depending on scanned symbol
initial state and current state

current state

control store (program)

accept final state

reject final state




An instruction of a TM is a tuple:

(@, a, p, d)e QxI'xQx(I'U{LR})
where
g is the current state
a is the symbol scanned by the tape head

(g,a) define a precondition that the machine may encounter

(p,d) specify the actions to be done by the TM once the machine is in a
condition matching the precondition (i.e., the symbol scanned by the tape
head is ‘a’ and the machine is at state q )

p is the next state that the TM will enter

d is the action to be performed:

-d = b e I’ means “write the symbol b to the tape cell currently
scanned by the tape head”.

-d = R (or L) means "move the tape head one tape cell in the
right (or left, respectively) direction.

A Deterministic TM program 6 is simply a set of TM instructions (or
more formally a function: 6: Q x I' --> Qx (I" U{L,R}))



A deterministic 1-tape Turing machine (STM) is a 9-
tuple

M=(Q,2TI,I,3,s, tr) where
Q : is a finite set of (program) states with a role like labels
in traditional programs
I : tape alphabet
> < I' : input alphabet
[ e T'-X : The left end-of-tape mark
1 e I'-X is the blank tape symbol
s € Q : initial state
t € Q : the accept state
r«t e Q: the reject state and
d: (Q - {t,r})xT --> Qx(I' U {L,R}) is a total transition
function with the restriction: if 8(p, [ ) =(q, d) then d = R.
i.e., the STM cannot write any symbol at left-end and
never move off the tape to the left.



Issue: h/w to define configurations like those
defined at FAs and PDAs ?

At any time t; the TM M’'s tape contains a semi-
infinite string of the form
Tape(ty) = [VY1YoY DO OO ..., (Y, #0)
Let (1 © denotes the semi-infinite string:
O0oog.....
Note: Although the tape is an infinite string, it has a

finite canonical representation: y, wherey =[VY;...Y,
(with y = 1)

A configuration of the TM M is a global state giving a
snapshot of all relevant info about M’s computation



Def: a cfg of a STM M is an element of
Chy =qes QX {[Y | Y e @T={[})*'} XN // N =
{011121---} //
When the machine M is at cfg (p, z, n) , it means M is
1. at state p
2. Tape head is pointing to position n and
3. the input tape content is z.
Obviously cfg gives us sufficient information to continue the
execution of the machine.
Def: 1. [Initial configuration:] Given an input x and a STM M,
the initial configuration of M on input X is the triple:
(s, 1x, 0)
2. If cfgl = (p, y, n), then cfgl is an accept configuration if p
t (the accept configuration), and cfgl is an reject cfg if p = r
( the reject cfg). cfgl is a halting cfg if it is an accept or
reject cfg.



one-step Turing computation ( |--) is defined as follows:

™M C CFM2 S.t.

0. . (plzln) |__M (qlsnb(z)l n) if 8(plzn) = (ql b) where

D e

1. (pz,n) |--w (q,z, n-1) it 8(p,z,) = (q, L)

2. (plzln) |__M (qIZI n+1) if 6(plzn) — (ql R)
where s", (z) is the resulting string with the n-th symbol of z replaced
by ‘b’
ex: s*,( [baaacabc ) = [baabcabc

sé,( [baa ) = [baalllb

|--v is defined to be the set of all pairs of configurations

each satisfying one of the above three rules.

Notes: 1. if C=(p,z,n) |--y (q,y,m) then n>0and m>0
(why?)
2. |--m is a function [from nonhalting cfgs to cfgs] (i.e., if C
|--w D & C |--y E then D=E).
3. define |--",, and |--* (ref. and tran. closure of |--y) as




—_— — — ~ _ -~ — L = — — —~ - - \ / — — — —_ L, — —_—

X € X is said to be accepted by a STM M if
icfgm(X) =qer (S, X, 0) [--*w (t,y,n) for some

y and n
I.e, there is a finite computation
(Sl [XI O) = CO |_-M Cl |-_ M = |_-M Ck = (tIYIn)

starting from the initial configuration and ending at an accept
configuration.

X is said to be rejected by a STM M if
(s, 1x, 0) [--*v (ry,n)  for somey
and n

I.e, there is a finite computation

(s, [x,0) =Cy |--my Cy |-= mer [--m C = (L,y,N)
starting from the initial configuration and ending at a reject
configuration.

Notes: 1. Itis impossible that x is both accepted and rejected by a
CTM (whv ?)



[’|>
(P
(P

()
)
)

Def:
1. M is said to halt on input X if either M accepts x or

rejects X.
2. M is said to /oop on x if it does not halt on x.

3. ATM is said to be total if it halts on all inputs.
4. The language accepted by a TM M,
L(M) =4 {X in Z* | x is accepted by M, i.e., (s, [x1® ,0)
|__*M (tl _I_) }
5. If L = L(M) for some STM M
==> L is said to be recursively enumerable (r.e.)
6. If L = L(M) for some total STM M
==> L is said to be recursive
7. If v L=y 2* - L =L(M) for some STM M (or total STM

M)
==> L is said to be Co-r.e. (or Co-recursive, respectively)



Ex1: Find a STMto accept Ly ={ W # W | W e
{a,b}* }
note: L, is not CFL.

The STM has tape alphabet I = {a, b,#, -, [, [} and behaves as
follows: oninputz=w # w € {a,b,# }*
1. if zis not of the form {a,b}" # {a,b}™ => goto reject
2. move left until '[' is encountered and in that case move right
3. while I/P = *-" move right;
4. if I/P = ‘a’ then
4.1 write '-’; move right until # is encountered; Move right;
4.2 while I/P = '-" move right
4.3 case (I/P) of { ‘a’: (write *-’; goto 2); o/w: goto reject

5.ifI/p ='b"then ... // like 4.1~ 4.3
6. If I/P = *#' then // All symbols left to # have been compared
6.1 move right
6.2 while I/P = '-" move right



Step 1 can be accomplished as follows:
1.1 while (~# /\ ~01) R; // or equivalently, while
(a\VV bVV[) R
if 0 => reject // no # found on the input
if # => R;
1.2 While ( ~# /\ ~0)R;
if 0 => goto accept [or goto 2 if regarded as a
subroutine]

if # => goto Reject; // more than one #s
found

Step 1 requires only two states:



cnd

O—— ACs @
P

means: :

if (state = p) /\ (cnd true for i/p)
then 1. perform ACs and 2. go to g

ACs can be primitive ones: R, L, a,...

or another subroutine TM M;,.

Ex: the arc from s to s implies the
existence of 4 instructions:
(s, a, s, R), (s,b,s,R), (s, [,s,R),
and (s,-, s,R)




Translation of the graphical form to tabular
fcgrm of a STM

&[ a |b |# |- |1

>S |S,R s,R |s,R |uR |x I,X

u |x uR uR |rx X |

tF halt halt halt |halt halt | halt

rF |halt halt halt |halt halt | halt

X means don’t care

The rows for t & r indeed need not be listed!!



The complete STM accepting L,




Recall the following definitions:
1. M is said to halt on input x if either M accepts x or

rejects Xx.
2. M is said to /oop on x if it does not halt on x.

3. ATM is said to be total if it halts on all inputs.
4. The language accepted by a TM M,
L(M) =4 {X €X* | X is accepted by M, i.e., (s, [x[1®,0)
|__*M (tl _I_) }
5.If L = L(M) for some STM M
==> L s said to be recursively enumerable (r.e.)
6. If L =L(M) for some total STM M
==> L is said to be recursive
/. If ~ L=y 2* - L = L(M) for some STM M (or total STM
M)
==> L is said to be Co-r.e. (or Co-recursive,
roacnpectivvelv)



Recursive languages are closed under
complement

Theorem 1: Recursive languages are closed under complement
(i.e., If L is recursive, then ~L = ¥* - L is recursive.)

pf: Suppose L is recursive. Then L = L(M) for some total TM M.

Now let M* be the machine M with accept and reject states
switched.

Now for any input X,

X ¢ ~L=> xe L(M) => icfgy(x) |-y* (t,-,-) =>
icfgu«(X) |-w«* (r*,-,-) => x ¢ L(M*).

Xe ~L =>x ¢ L(M) => icfgy(x) |-y* (r-,- =>
icfgu«(X) |-mx* (t*,-,-) => x e L(M*).

Hence ~L = L(M*) and is recursive.
Note.The same argument cannot be applied to r.e. languages.
(why?)

Exercise: Are recursive sets closed under union, intersection,
concatenation and/or Kleene’s operation ?



Set : Recursive and recursively enumerable(r.e.)

predicate: Decidability and semidecidability

Problem: Solvability and semisolvabilty

P : a statement about strings ( or a property of strings)

A: a set of strings

Q : a (decision) Problem.
We say that
1. Pis decidable <==> { x | P(x) is true } is recursive
2. A is recursive <==> "X € A” is decidable.
3. P is semidecidable <==> { x | P(x) is true } is r.e.
4. Aisr.e. <==> "X € A" is semidecidable.

5. Q is solvable <=> Rep(Q) =4 {'P” | P is a positive instance
of Q } is recursive.

6. Q is semisolvale <==> Rep(Q) is r.e..



